Orbifold Kähler–Einstein metrics on projective toric varieties

نویسندگان

چکیده

In this short note, we investigate the existence of orbifold Kähler–Einstein metrics on toric varieties. particular, show that every Q $\mathbb {Q}$ -factorial normal projective variety allows an metric. Moreover, characterize K $K$ -stability pairs Picard number one in terms log Cox ring and universal cover.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a family of projective toric varieties

By means of suitable sequences of graphs, in a previous paper, we have studied the reduced lexicographic Gröbner bases of a family of homogeneous toric ideals. In this paper, we deepen the analysis of those bases and derive some geometric properties of the corresponding projective toric varieties.

متن کامل

Syzygies of Projective Toric Varieties

We study the equations defining a projective embedding of a toric variety X using multigraded Castelnuovo-Mumford regularity. Consider globally generated line bundles B1, . . . , Bl and an ample line bundle L := B ⊗m1 1 ⊗ B2 2 ⊗ · · · ⊗ Bl l on X . This article gives sufficient conditions on mi ∈ N to guarantee that the homogeneous ideal I of X in P := P (

متن کامل

Self-dual projective toric varieties

Let T be a torus over an algebraically closed field k of characteristic 0, and consider a projective T -module P(V ). We determine when a projective toric subvariety X ⊂ P(V ) is self-dual, in terms of the configuration of weights of V .

متن کامل

K ¨ Ahler Metrics on Singular Toric Varieties

We extend Guillemin's formula for Kähler potentials on toric manifolds to singular quotients of C N and CP N .

متن کامل

Geometric invariant theory and projective toric varieties

We define projective GIT quotients, and introduce toric varieties from this perspective. We illustrate the definitions by exploring the relationship between toric varieties and polyhedra. Geometric invariant theory (GIT) is a theory of quotients in the category of algebraic varieties. Let X be a projective variety with ample line bundle L, and G an algebraic group acting on X, along with a lift...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of The London Mathematical Society

سال: 2023

ISSN: ['1469-2120', '0024-6093']

DOI: https://doi.org/10.1112/blms.12892